En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
[pi:nʌt'ɔil]
общая лексика
арахисовое масло
ореховое масло
['kɔlzə]
существительное
общая лексика
сурепица
ботаника
рапс (Brassica napus или oleifera)
рапс
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that
for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.
We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line:
where 0 < α ≤ 1.